This is a minor rewrite of
a post I wrote in 2008. I have not updated it to include the
controversy over demoting Pluto from planet to some other category.
What to call and how to define that category is another story. Nor
have I included the amazing KPO discoveries of Mike "Pluto
Killer" Brown. Who knows, if I put it all together, I might have
my next book.
In 2008, Scientists at
Kobe University proposed that a Mars-sized planet still waited to be
discovered in the outer solar system. Ever since the discovery of
Neptune in 1846, scientists have debated whether another planet and
its gravity were necessary to account for the observed motions of the
other bodies in the solar system. Their prediction was based on a
computer model of the evolution of the Kuiper Belt, that group of
thousands of asteroids and mini planets that includes Pluto as its
best known member.
The composer William
Herschel and his sister Caroline in 1781 were the first people to
discover a new planet. The idea of finding an unknown planet was so
novel at the time that for months the Herschels thought they had
discovered a comet and were puzzled by its orbit and refusal to
develop a tail. When it finally dawned on them what they had
discovered, they knew it need a better name than Comet Herschel. They
called it George, after the insane king of England.
Understandably,
continental astronomers were less than thrilled to accept a name
chosen to flatter a foreign political figure. Several of their
countries were at war with England at the time in support of the
American rebellion. French astronomers graciously pushed for calling
the planet Herschel. Johann Bode, a Prussian publisher of ephemeris
tables, suggested a compromise. Since all of the other planets had
names out of Greco-Roman mythology, why not continue the pattern and
name it after a mythological figure? He suggested Uranus, the father
of Saturn, as an appropriate name, not realizing how the mere heating
of that name would cause English-speaking adolescent boys to fall
into fits of giggles.
Bode's suggestion for the
distant planet was adopted outside England and France, where
astronomers stuck to their own names for another sixty years before
finally giving in to the usage of the rest of the this planet. Bode's
name was especially popular among other Germans. In 1789, a Berlin
chemist, Martin Klaproth, isolated a new element found in pitchblende
ore. Recalling the alchemical traditions of making connections
between minerals and planets, he named his new element after the new
planet, calling it Uranium. He has a crater on the moon named after
him.
Herschel wasn't the first
to use celestial discoveries to curry favor with his economic
betters. When Galileo discovered the four major moons of Jupiter in
1610, he decided to name them after his former math student Cosimo
de'Medici, who had since become the powerful Grand Duke of Tuscany.
Galileo first thought to name them the Cosmican Stars, but then
thought better of it. The name was too close to Cosmic Stars and the
significance might be lost on the object of his up sucking. In
Sidereus Nuncius, his little book announcing the discovery, he called
the moons the Medicean Stars, a name unsubtle enough that even a busy
Grand Duke would take notice. The attempt was successful; a few
months later, Cosimo offered Galileo a high paying job that the the
math teacher quickly accepted. Not that Galileo needs any more honors
than he already has in order to be remembered, but the four giant
moons of Jupiter are collectively known as the Galilean moons.
Four years after Galileo
published his description of the Medicean Stars, a German astronomer,
Simon Marius, published a work claiming to have discovered the moons
before Galileo. He couldn't offer any convincing proof for his claim,
so history has sided with Galileo. Marius' observations were,
however, of high quality and he gave us something Galileo did not:
individual names for the moons (Io, Europa, Ganymede, and Callisto,
all lovers of Jupiter in mythology). The French astronomer
Nicolas-Claude Fabri de Peiresc suggested that the four moons be
named after the four Medici brothers, something Galileo may also have
had in mind, but the suggestion was not taken up by the budding
international astronomical community.
The mythological names
were not, in fact, Marius' first choice. His first idea was an
awkward system of naming moons after the Sun's planets (i.e. the
Mercury of Jupiter, the Venus of Jupiter). At the time there was no
reason not to assume that smaller moons might be orbiting the bigger
moons and so on. This might have led to names like the Saturn of the
Mars of the Mercury of Jupiter. Clearly, a bad idea. Maris humbly
credited Johannes Kepler with the much better suggestion of classical
mythology. Kepler is famous for enough else that is vital for the
development of astronomy; let's let Marius be remembered for
publicizing the suggestion.
In 1655 Christiaan Huygens
discovered a moon orbiting Saturn. He cleverly called it Saturn's
Moon. When Giovanni Cassini discovered four more moons around Saturn,
he followed Galileo's example and named them Sidera Lodoicea ("the
stars of Louis") to honor his employer Louis XIV of France. He
did not give his new moons individual names and, oddly, neither did
anyone else. For most of the next two centuries, astronomers simply
called them by numbers.
A century and a half
later, following the Herschel's discovery of Uranus, other
astronomers put their telescopes to work seeking out new Georges to
name after their own political patrons. In 1801 a Sicilian
astronomer, Giuseppe Piazzi, was the first to strike gold. Spotting
an object orbiting between Mars and Jupiter and determining it not to
be a comet, he announced that he had found a tiny planet, and named
it Ceres Ferdinandea. The name seemed to cover all the bases, it had
an element from classical mythology (Ceres, the Roman goddess of
agriculture) and it sucked up to his king. Unfortunately, his king,
Ferdinand of Sicily, had recently been overthrown by Napoleon and no
one went along with naming a celestial object after a powerless
refugee. Other mythological names were suggested, but eventually
everyone accepted the Ceres part of Piazzi's suggestion.
As astronomers began
looking at the region in which Ceres had been found, they promptly
found three more tiny planets. These were named Pallas, Juno, and
Vesta. Naming planets after kings had proved to be a non-starter, so
the astronomers went straight classical mythology. On the other hand,
naming elements after planets was very popular. Soon after the four
tiny planets between Mars and Jupiter ere announced, chemists
isolating the elements gave us Cerium and Palladium. Juno already had
a month named after her, but poor Vesta didn't get squat, which is a
shame because Vestanite would be a much cooler name than
Rutherfordium or some of the other lame names given the transuranian
elements.
Bode had predicted a
planet in the region where the new mini-planets were found based on a
pattern he, and other astronomers, perceived in the distances between
the planets. This pattern is now called the Titus-Bode Law. However,
the tiny new planets in that position bothered astronomers. They were
smaller than any of the known moons. William Herschel suggested not
letting these insignificant objects into the august club of planets.
He coined a new word, "asteroid" (star like), to describe
them. The little planets remained in limbo until the 1840s when a new
generation of more powerful telescopes led to the discovery of more
tiny bodies between Mars and Jupiter. Facing the prospect of dozens
or more new planets, the international astronomical community adopted
Herschel's suggestion and demoted the asteroids to a separate
category apart from the planets.
The Herschels had
discovered two moons to go with their new planet. These would later
be named, on the suggestion of William's son John, after characters
in "A Midsummer Night's Dream." While not strictly
classical mythology, Shakespeare's fairies were close enough to
satisfy Bode's mythology principle and the names were never seriously
challenged. The Herschels also discovered two more moons around
Saturn, bringing the known total to seven. Up until the 1840s,
astronomers had simply referred to the Saturnian satellites by
numbers counting out from the planet, not in the order of their
discovery. This meant the names were subject to change every time a
new moon was discovered. The largest moon had already been called
Saturn II, IV, and VI. This couldn't continue. John suggested a
classical mythology solution by naming the moons after the Titans,
the brothers and sisters of Saturn, reserving the name Titan for the
first discovered because it was so titanic. The named Saturnian moons
are really no more than Titan and the Titans, which might be a decent
name for a surf guitar band.
For their contributions,
the Hershels had a well deserved number of objects named after them.
Sir William had a crater on the moon, an impact basin on Mars, a
crater Mimas (a Saturnian moon which he and Caroline discovered and
which John named), and an asteroid named after him. Caroline has a
lunar crater and an asteroid. John has a crater on the moon.
At about the same time
that the word asteroid and the naming patterns for the moons of
Saturn and Uranus were adopted, the search was on for another planet
beyond Uranus. Based on a half century of observing Uranus' orbit and
a search through older observations for potential Uranus sightings
(stop giggling) some astronomers had come to believe that the gravity
of another large body must be affecting it, causing it to move faster
than expected till 1822 and slower afterwards. By the 1840s
astronomers had a rough idea where to look for the mystery planet. In
1846 Urbain Le Verrier calculated and published the exact location
and observers in three countries had no problem finding the planet
soon after that. British astronomers had calculated the correct
location before Le Verrier, but did not publish and were thus denied
the glory of being part of the discovery.
Some French astronomers
wanted to call the eighth planet Le Verrier, pointing out that naming
a planet after its discoverer had a precedent, since they still
called Uranus Herschel. Le Verrier at first suggested the name
Neptune, after the god of the sea. For a while he also flirted with
naming it after himself, but the name Neptune caught on beating out
the other classical names Janus and Oceanus. The god of the sea was
especially compelling because Neptune appeared very blue.
The new planet also got
its commemorative element, thought this time it took longer.
Neptunium was assembled, not refined, by scientists at Berkeley in
1940. It was the first synthetic element to be built by bombarding
another element, in this case Uranium, with neutrons. Glenn Seaborg,
who led the Berkeley project eventually got an element of his own for
his work, Seaborgium, but he didn't get a celestial object... yet.
A mere seventeen days
after the location of Neptune was confirmed, William Lassell, an
English brewer, announced his discovery of a large moon. Since the
astronomical community was busy arguing over the name of the planet,
you would think that they would also get hot under the collar over a
name for the moon. You would be wrong. Once again, naming the was
forgotten. It carried the dull name Neptune's Moon for over thirty
years. In 1880, Camille Flammarion suggested Triton, the name of
Neptune's son, for the moon. He also named one of Jupiter's newly
discovered minor moons, Amalthea, in 1892. For his contribution he
has had a lunar crater, a Martian crater, and an asteroid named after
him.
In 1919 the International
Astronomical Union (IAU) was created uniting various national
astronomical societies from around the world. One of its main
functions was to be the central authority for assigning names to
celestial bodies. In general, certain patterns for naming, such as
those John Herschel suggested for moons seventy years earlier are
voted on and astronomers are allowed to exercise the discoverer's
right on naming within those conventions. The IAU must officially
accept an astronomer's name before it goes into international use. A
system of numeric designations are used for objects as temporary
names prior to the announcement of official names. The IAU came in
the nick of time. The ideological conflicts of the twentieth century
could easily have been fought out in naming conventions. Each power
bloc might have adopted its own name for every discovery and changed
their names with every revolution. Imagine St. Petersburg to
Petrograd to Leningrad and back to St. Petersburg played out on every
comet and crater in the solar system.
In the 1830s, astronomers
were convinced that another planet was required to explain Uranus'
movements and had begun working on calculations to locate the planet.
That planet was Neptune. Even then, some astronomers believed one
planet would not be enough. In 1834, a Dutch astronomer, Peter
Andreas Hansen, wrote that he was convinced that two planets would be
required to explain Uranus' movements. Following the discovery of
Neptune, other astronomers agreed, though they did not agree just
what was required. By the 1870s, enough data had been collected about
Neptune for astronomers the begin making predictions as to where the
next planet would be found and how big it should be. Astronomers in
various countries began their own searches. None of these predictions
matched Le Verrier's and no new planets were found.
Le Verrier himself became
involved with the search for a tiny planet between Mercury and the
Sun. Mercury's orbit, like Uranus' never quite matched the
predictions of astronomers. Beginning in 1859, a number of amateur
astronomers claimed to witness the transit of a small body across the
sun. Le Verrier examined one such claim and became convinced he had
another planet. He announced his discovery to the French Academy and
called his second planet Vulcan. Unfortunately, the periodic
sightings of a spot on the Sun never resolved into a single planet.
After Le Verrier's death Vulcan fell out of fashion and was all but
forgotten by the astronomical community. In 1919, the same year that
the IAU was founded, Einstein proved the problems with Mercury's
orbit were caused by the curving of space so close to the sun and not
by the pull of a missing planet. Mysterious dots still are reported
from time to time on the face of the sun, but these are usually
dismissed as uncharted asteroids, comets, or alien starships, though
the latter is decidedly a minority opinion. Although he was wrong
about Vulcan, Le Verrier's other contributions earned him craters on
the moon, Mars, an asteroid, and a ring around Neptune.
In 1894, Percival Lowell
burst onto the astronomy scene. Lowell was the product of old an
Boston family with lots of old Boston money. Lowell had traveled
extensively in Asia, written several books on Asian culture, and
served as foreign secretary and counselor for a special Korean
diplomatic mission to the United States. In the nineties he turned
his attention and considerable enthusiasm to astronomy. Lowell moved
to Flagstaff, Arizona and built a world-class observatory in the
high, clear, mountain air. At first, Lowell was obsesses with the
planet Mars. He was convinced that the "canali" of Mars, as
drawn by Italian astronomer Giovanni Schiaparelli, were indication of
life and civilization on our red neighbor. Lowell wrote three books
and suffered a nervous breakdown before he let go of that idea and
moved on to something else.
That something else was
the missing planet beyond Neptune. This was a serious problem,
recognized by serious astronomers. Though Lowell was thick-skinned
about the mockery directed at him over Mars, years of it had begun to
wear on the staff at his observatory. Besides, there was very little
more he could do about Mars without a spaceship. Lowell did his own
calculations on the Neptune problem and decided a large planet must
be lurking in the constellation Gemini. He spent the last eleven
years of his life looking for the body he called Planet X, but died
without finding it.
After Lowell's death there
was a delay of a decade in the search while Lowell's widow,
Constance, and the observatory fought over his will. In 1929 with
their share of Lowell's wealth assured, the observatory hired a young
amateur astronomer from Kansas, Clyde Tombaugh, to take over the
search. Tombaugh was an excellent candidate, both hard working and an
excellent observer. He carefully went over the calculations for
Planet X done by Lowell and by Lowell's competitors before deciding
on an area to search. On February 18, 1930, after only a year of
searching, Tombaugh discovered his Planet X.
Naming rights belonged to
the observatory. They decided to be democratic and hold a vote. Mrs.
Lowell sent suggestions of Zeus, Lowell, and her own name Constance.
Mrs. Lowell was not the favorite person at the observatory, having
almost stopped their work for a decade. Her names were ignored. The
choices on the ballot were Minerva, Cronos, and Pluto. Pluto, the god
of the underworld, who eternally dwellsin darkness, won unanimously.
While astronomers were
excited about the discovery of Pluto, it was clear from the beginning
that it was too small to be the longed for Planet X. As time went by,
better observations showed that Pluto was even smaller than at first
believed--smaller than the Earth's Moon--and that it had an irregular
orbit far different that that of any other planet. Pluto, however,
had an advantage that Ceres never did in becoming accepted as a
planet: mass communication and mass literacy. The discovery of new
planet was announced in newspapers and newsreels. The name had been
suggested to the observatory by Venetia Burney, an eleven-year-old
girl in Oxford, England. Walt Disney introduced a character named
Pluto into his Mickey Mouse cartoons later that year. Pluto even got
its commemorative element, Plutonium. Like Neptunium, Plutonium was
assembled at Berkeley. Pluto wasn't just the business of the
astronomical community; Pluto belonged to the masses, particularly to
the children.
In the same year that
Tombaugh discovered Pluto, Frederick C. Leonard predicted that there
was a whole belt of tiny objects beyond Neptune. Sooner or later we
would have good enough telescopes to find them and the astronomical
community would be faced with the same problem that they had faced
with the asteroids: too many and too small to be planets. That day
finally came in 1992. Gerard Kuiper was an astrophysicist, who
speculated in 1950 that the region beyond Neptune ought to at one
time have contained a belt of debris left over from the formation of
the solar system, pieces that were neither asteroids nor comets. At
the time, when Pluto was still thought to be fairly large, Kuiper
believed Pluto would have destroyed the belt by flinging them into
new orbits. But as estimates of Pluto's size went down, the
probability that the debris belt still survived went up. In the late
eighties, astronomers began looking for it. One Pluto like object was
discovered in 1992. Five more were identified the next year. Today,
over 1000 of these Kuiper Belt Objects (KBOs) have been discovered.
While thousands more KBOs
are expected to lie beyond the orbit of Pluto, very few astronomers
expect to find a large planet out there. For one thing, it's no
longer needed. Close measurements provided by Voyager 2's 1989 flyby
of Neptune allowed astronomers to more accurately measure the mass of
Neptune. According to the current measurements of their masses,
Uranus and Neptune orbit exactly as they should. Occasionally,
astronomers come up with new reasons for a large planet or even a
small star to be lurking in the distant reaches of the solar system,
but these no longer have to do with the orbits of the known planets.
This brings us to the Kobe
University study. Patryk Lykawka and Tadashi Mukai have determined
that a body, Earth sized or just a little smaller, is needed to
explain the observed shape of the Kuiper Belt. The rapid discovery of
so many KBOs allowed astronomers to map the shape of the belt. To
their surprise, the belt abruptly stops at a distance of 50
astronomical units. The belt also appears to have been sorted into
several distinct groups of bodies. Lykawka's conclusion is that
something fairly large--a new Planet X--was needed to sort and sculpt
the belt into the shape we now see.
Close up observation of
Saturn's rings have shown that they are herded into shape by complex
gravitational forces exerted by Saturn's moons. Lykawka thinks
something similar is at work in the Kuiper Belt, but with one
difference. In the computer simulations that he and Mukai did, Planet
X shapes the belt early in its history and then is thrown into a
distant orbit where it has only minor interactions with the belt.
After its initial shaping, the main influence on the Kuiper Belt
becomes Neptune.
While Lykawka's theory has
some sympathetic listeners, it also has some strong critics. Not
surprisingly, some of the strongest criticism comes from the
proponents of competing theories of the early development of the
solar system. The bottom line is that we are just beginning to
understand the outer solar system and to come up with plausible
scenarios for the evolution of the solar system that account for all
of its parts. If Lykawka's theory proves correct and someone finds
Planet X, the really important question will be what do we call it.
George is still up for grabs.
Epilog: A few hours after
I post this, a spaceship from Earth will fly by Pluto gathering data.
Pluto as the first and best studied KPO and erstwhile ninth planet is
a special object of interest for scientists, children, and former
children alike. After Tombaugh discovered Pluto, it seemed to be
evaporating. Almost immediately, it was obvious that it wasn't big
enough to be the gravitational source needed to explain the
peculiarities in Uranus' orbit observed by Nineteenth Century
astronomers.
Over estimating Pluto's
initially might have been based on wishful thinking. However,
increasingly better observations over the next half century
undermined that estimate and undermined it again. Originally
estimated as larger than Earth, Pluto soon shrank to Mars sized and
smaller. When I was in grade school in the early sixties, my science
textbooks wanted to give each planet a unique quality. While Pluto
and Mercury easily claimed closest and furthest from the sun, they
were tied for smallest. By the next edition of those books, it was
clear that Pluto was the smallest. Soon it was the size of the moon.
Then smaller.
In 1980, Alexander
Dessler, and Christopher Russell published a graph of historical
estimates of Pluto's size and predicted it would disappear by 1984.
It didn't. By then, James Christy of the United States Naval
Observatory had discovered a large moon around Pluto. Christy gave it
the appropriate name Charon, the boatman who carries the souls of the
dead across the river Styx into the realm of Pluto. But Christy
wanted the name to be pronounced "Sharon" like his wife's
name.
Because Pluto didn't
evaporate, NASA took advantage of a rare post-Apollo moment of
funding to fire a probe at the children's planet or whatever you want
to call it. Since the New Horizons probe was launched, two more moons
have been discovered around Pluto. Each was given a name appropriate
to the god of the underworld's realm.
And Clyde Tombaugh, what
about him? What honors did he get. Tombaugh died in 1997. He had his
mortal remains cremated. A portion of his ashes were placed in a
small tube and given to NASA. That tube was ataced to the New
Horizons probe and will pass within spitting distance of the
celestrial object he discovered. In many ways, if you're dead, that's
far better than having your name stuck on a map.
Go Clyde! You have no idea
how many nerds wish they were there with you.
No comments:
Post a Comment